Differential Geometry

Homework 11

Mandatory Exercise 1. (10 points)

(a) Let X and Y be vector fields on \mathbb{R}^n . By canonical identification of $T_p\mathbb{R}^n$ with \mathbb{R}^n one can see a vector field as a map $\mathbb{R}^n \to \mathbb{R}^n$. Recall that the derivative of Y in direction of X is defined as

$$D_X Y(p) := \lim_{t \to 0} \frac{Y(p + tX(p)) - Y(p)}{t}.$$

Show that this defines the Levi-Civita connection ∇^{euc} of \mathbb{R}^n with euclidean metric g_{euc} .

Now let M be a submanifold of \mathbb{R}^n with induced Riemannian metric g.

(b) Let X and Y be vector fields on M and \tilde{X} , \tilde{Y} be extensions to \mathbb{R}^n . Show that the orthogonal projection of the derivative of \tilde{Y} in direction of \tilde{X} to T_pM represents the Levi-Civita connection of M, i.e.

$$\nabla^M_X Y = (D_{\tilde{X}} \tilde{Y})^{\perp T_p M}.$$

- (c) Use this result to compute again $\nabla_{\partial_{\alpha}} \partial_{\beta}$ from Exercise 1 on Sheet 8.
- (d) Show that a curve $c: I \to M$ is a geodesic, if and only if its acceleration is orthogonal to M.
- (e) Use this to find all geodesics on S^2 and on the standard embedding of T^2 into \mathbb{R}^3 (ϕ_2 from Exercise 1 on Sheet 8).

Mandatory Exercise 2. (10 points)

Let $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ be isometries given by

$$f(x,y) = (-x, y+1)$$
 and $g(x,y) = (x+1, y)$.

To which manifolds are $\mathbb{R}^2/\langle f \rangle$ and $\mathbb{R}^2/\langle f, g \rangle$ homeomorphic?

Suggested Exercise 1. (0 points)

Let H^2 be the hyperbolic plane. Show that:

(a) The formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d}$$

defines an action of $PSL_2(\mathbb{R}) := SL_2(\mathbb{R})/\{\pm \mathrm{Id}\}$ on H^2 by orientation preserving isometries.

- (b) For any two geodesics $c_1, c_2 : \mathbb{R} \to H^2$, parametrized by arclength, there exists $g \in PSL_2(\mathbb{R})$ such that $c_1(s) = g \cdot c_2(s)$ for all $s \in \mathbb{R}$.
- (c) Given $z_1, z_2, z_3, z_4 \in H^2$ with $d(z_1, z_2) = d(z_3, z_4)$, there exists $g \in PSL_2(\mathbb{R})$ such that $g \cdot z_1 = z_3$ and $g \cdot z_2 = z_4$.
- (d) An orientation preserving isometry of H^2 with two fixed points must be the identity. Conclude that all orientation preserving isometries are of the form $f(z) = g \cdot z$ for some $g \in PSL_2(\mathbb{R})$.

Suggested Exercise 2. (0 points)

Prove the second Bianchi identity:

For any vector fields X, Y, Z, T it holds that

$$(\nabla_X R)(Y, Z, T) + (\nabla_Y R)(X, Z, T) + (\nabla_Z R)(X, Y, T) = 0.$$

Here $(\nabla_X R)$ denotes the covariant derivative of the Riemann (1,3) tensor field, in the direction of X, that is,

$$(\nabla_X R)(Y, Z, T) = \nabla_X (R(Y, Z)T) - R(\nabla_X Y, Z)T) - R(Y, \nabla_X Z)T - R(Y, Z)\nabla_X T.$$

Hint: Viewing ∇_{X-} , $(\nabla_X R)(Y, Z, .)$, R(Y, Z), etc. as maps from $\mathfrak{X}(M)$ to $\mathfrak{X}(M)$, and using the notation $[f,g] = f \circ g - g \circ f$, prove that

$$(\nabla_X R)(Y, Z, _) = [\nabla_X, R(Y, Z)] - R(\nabla_X Y, Z) - R(Y, \nabla_X Z).$$

Then use $R(Y,Z) = [\nabla_Y, \nabla_Z] - \nabla_{[Y,Z]}$. Permute X, Y, Z cyclically and add all these three equations. Then the Jacobi identity on Lie brackets, and the fact that the connection is torsion free, imply the second Bianchi identity.

Suggested Exercise 3. (0 points)

Let M^n be a connected, *n*-dimensional Riemannian manifold, with $n \ge 3$. Assume that M is isotropic, i.e. there exists a smooth function K on M such that for any $p \in M$, and any 2-dimensional subspace H of T_pM , the sectional curvature K(H) = K(p). Then M is of constant sectional curvature, i.e. function K is constant.

Hints:

• Recall that we had shown in class that if M is isotropic then

$$R(X, Y, Z, W)_p = -K(p)R'(X, Y, Z, W)_p$$

where

$$R'(X, Y, Z, W) = \langle X, Z \rangle \cdot \langle Y, W \rangle - \langle X, W \rangle \cdot \langle Y, Z \rangle$$

Show that for any $U \in \mathfrak{X}(M)$ we have that $\nabla_U R = -U(K) \cdot R'$.

- To prove that K is constant it is enough to show that for any $p \in M$ and any $X \in \mathfrak{X}(M)$ one has $X_p(K) = 0$. To show this, take any $X \in \mathfrak{X}(M)$ and fix any $p \in M$. As dim $M \geq 3$, one can find vector fields $Y, Z \in \mathfrak{X}(M)$ such that $\langle X, Y \rangle = \langle Y, Z \rangle = \langle X, Z \rangle = 0$ and $\langle Z, Z \rangle = 1$ around p.
- The Second Bianchi Identity, proved in previous exercise, gives that for any $W \in \mathfrak{X}(M)$

$$0 = \langle (\nabla_Z R)(X, Y, Z) + (\nabla_X R)(Z, Y, Z) + (\nabla_Y R)(Z, X, Z), W \rangle$$

Use the first hint to deduce from the above that $X(K) \cdot Y + Y(K) \cdot X = 0$ around p. Then deduce that $X_p(K) = 0$.

Hand in: Monday 4th July in the exercise session in Seminar room 2, MI